

SCM Optimization and Simulation

SimChain Toolset

Dr. Till Fechteler

SIMULATION SOLUTIONS FOR PRODUCTION AND LOGISTICS PROCESSES

Contents

Content

SimPlan AG

SimChain Toolset

- → SCM Optimization and Simulation with anyLogistix
- → SCM Simulation with SimChain PS
- → SCM Optimization with Python
- **Experiences from SCM Projects**
- SCM Simulation as a Digital Twin
- **SCM Simulation in Risk Management**
- References
- Demonstration
- Q&A

SimPlan AG Short Introduction

SimPlan AG **Company Locations and History**

1992	Formation
1996	Sales Partner AESOP (Simple++), today SPLM
2000	Transition to AG (plc)
2001	SimPlan Integrations GmbH, Witten
2002	Branch offices: Brunswick, Regensburg
2004	induSim GmbH, Langenau
2006	Branch office Munich
2007	Branch office Holzgerlingen
2009	SimPlan Austria; Business extension: Planning & Consulting
2010	SimPlan China, Shanghai
2012	SimPlan Systems GmbH
2015	Branch office Dresden
2016	Branch office Bremen
	Relocation of the headquarter from Maintal to Hanau
2017	SimPlan Optimizations, Vienna
Today	126 Employees 12 Locations 16 Mio. EUR turnover

- Simulation-based control centre
- Advanced production planning
- Sequence optimisation

- Building blocks / Libraries
- Software consulting

SimPlan AG Projects and Customer Base

SimChain Toolset

SimChain Toolset

SCM Simulation with anyLogistix SimChain Toolset

- Enables you to design, optimize, experiment, analyze your supply chain and create its digital twin
- Leverage both analytical and dynamic simulation methods
- Employ the power of the leading dynamic simulation engine from AnyLogic and leading solver CPLEX from IBM for precise end-to-end supply chain analysis
- Extend standard ALX functionality: add inside 4 walls models, user-defined tables and logic
- Use powerful visualization and dashboard capabilities to observe how the supply chain works

anyLogistix							
Supply Chain Model							
Analytical methods			Simulation modeling methods				
Linear Programming	Heuristics	Mixed Integer Programming	Agent-Based	Discrete- event	System Dynamics		

SCM Simulation with anyLogistix Experiments

High abstraction level minimum details Medium abstraction	Customer locations Demand per customer Number of DCs or service distance Customer locations Demand per customer Possible warehouse locations Transportation cost Real routes Customer locations Demand Production capacity Transportation cost	 GFA Number of warehouses/DCs Approximate location(s) Network optimization Number of warehouses/DCs The best locations Inventory policy Production planning Fleet optimization 	Analytical methods
level medium details	Customers and their locations Demand/orders Possible warehouse locations Real routes Means of transportation Sourcing policies	Simulation-based Network OptimizationNumber of sites Investments in inventory Capital employed Operational cost by category.The best sourcing, inventory, production policies	nethods
Low abstraction level	Transportation policies Production policies Costs - transportation, handling, warehousing, renting, guarding, insurance Uncertainty Capacities BOMs	What-if Loss because of out-of-stock. Resources Sensitivity Analysis utilization & capacities.	ulation
maximum details		Production planningFleet size, service levels, budget estimations, risk assessments, time to delivery, stress testing results	Simu
	BOMs 	stress testing results	

Supply Chain Design

Omni Channel Supply Chain

Risk Analysis

Budgeting & Cash Flow

SCM Simulation with anyLogistix Procedure

1 and

SCM Simulation with anyLogistix DEMO

SCM Simulation with SimChain PS

SimChain Toolset

SCM Simulation as a Digital Twin

History

- 2002 Common tool of the companies SimPlan and ICON
 - → Building block library under Plant Simulation
 - → Generic model
 - → Interface to other tools from ICON (monitoring and collaboration tools)
- 2004 Further development by SimPlan
 - \rightarrow Various project-related additions in different industries
- 2010 Re-design in cooperation with ZF Friedrichshafen
 - Development of a database-based front-end for modelling as well as for scenario and result management
- 2013 Extension for the modeling of FMCG distribution and consider CO₂ emissions
- 2017 Extension for the modeling of distribution in urban areas

SCM Simulation with SimChain PS Modelling of Typical Processes

Modelling Approach – Objects for Modeling

- 1. Customers (generation of demands)
- 2. Sites (production locations and warehouses with ERP functionality)
- 3. Hubs and plain Supplier (sources with replenishment time)
- 4. Transport relations

Basic objects for location modeling

SCM Simulation with SimChain PS

Basic Tables

Configuration Tables

Configuration tables are used to specify model parameters

Procedure:

- 1. Select **locations** for a scenario und specify parameters
- 2. Select SKU
- 3. Setup **customer demands** (quantity, forecast errors)
- 4. Setup the **sourcing of SKU** from the site to the customer
- 5. Specify **SKU at locations**
- 6. Setup resources und SKU at resources
- 7. Specify **reliability of transport planning** for all sourcing options

Scenarios

- A scenario consists of a set (combination) of configurations
- Advantages:
 - → No redundant data
 - → Copying of configurations possible
 - Increased level of transparency (differences between scenarios are obvious by examining their configurations)

SCM Simulation with SimChain PS

Scenarios

Model Statistics

- Results can be viewed under Plant Simulation
- Export of the results to the database
 - Key figures on costs, inventories, delivery service levels (aggregated and over time)
 - Utilization of resources, transport relations and means of transport
 - Container volume over time
- Simple analysis and comparison of scenarios by using SimAssist

Example Results – Service Level

Example Results – CO₂ Emissions

www.SimPlan.de

Utilization

Example Results – Truck Utilization

---MANNHEIM_99029 ---PARMA_I120

Example Results – Service Area Analysis

Service Area 4 h: Service Area 8 h: Service Area 12 h: Service Area 16 h: 10,7 % of the stores are reached 17,8 % of the stores are reached 98,8 % of the stores are reached 100,0 % of the stores are reached

SCM Simulation with SimChain PS

Demonstration

SCM Optimization with Python SimChain Toolset

SCM Simulation as a Digital Twin

SCM Optimization with Python

Fields of Application

- Data analysis and processing (beyond KNIME)
- Simple location selection problems
- Tour planning and optimization (milkruns)
- Application of optimization algorithms (e.g. Tabu Search, GA)
- Use of AI and ML methods

Experiences from SCM Projects

Experiences from SCM Projects

SCM Simulation - Potentials of Application

- Comparison of different network design alternatives
 - → Structure of distribution networks
 - → Production strategies
 - Sourcing strategies
- Configuration of networks
 - Dimensioning of stock coverage
 - Determination of suitable transport solutions (delivery cycles, minimum order quantities, delivery lot sizes, transport modes)
 - → Dimensioning of resources (e.g. number of production machines)
 - → Dimensioning of the number of (special) containers required
- Recognition of interdependencies in (complex) networks
- Faster start-up of supply chains
- Use in operational operation (forecast function of the simulation)

Typical Questions or Requirements

- There is a central warehouse from which all customers are supplied.
- Central warehouse at an "optimal/new" location (evaluation of delivery speed and costs)?
- Use of an existing central warehouse and introduction of additional regional warehouses or hubs?
- Storage in a completely decentralized structure?
- Introduction of an own vehicle fleet?

Target Figure: "Find the cheapest variant!"

Typical Questions or Requirements

- Typical requirements / restrictions for **distribution networks**
 - The number of possible hubs is limited to ten locations."
 - → "The maximum distance to customers is 250 km."
 - → "The delivery service level should be at least 99%."
 - "Each branch must be supplied at least once a week."
 - "Up to ten trucks are available for delivery every day. How should the route planning be structured?"
 - Time windows for delivery should be observed for each customer."

Typical Questions or Requirements

- Typical requirements / restrictions for **production networks**
 - There are several suggestions for assigning production steps to locations."
 - Some products are only produced three times a year."
 - In the event of flooding, no ships can dock. Tank wagons are then to be used as replacements."
 - The parts must be transported on special containers and the return transports to production must also be planned, as these are only available in limited quantities.

Modelling Approach – When to Optimize? When to Simulate?

- **Central Question**: Are results required for processes?
- Examples:
 - Which inventory levels must be set in order to achieve a delivery service level of 99%?
 - How high is the proportion of special deliveries by helicopter to ensure the supply of components on the assembly line?
 - How often should production planning be carried out?
- As a rule, these questions cannot be answered with sufficient accuracy using an optimization model.
- Optimization is typical for location decisions, neglecting concrete transport, production and warehouse processes.

Experiences from SCM Projects Location Selection by Optimization

Goal:

→ Minimize transport costs

Given:

- Customer and production locations (or ports)
- → Transport quantities
- Variables:
 - Coordinates and number of warehouses
- Procedure:
 - Specification of a maximum distance to customers
 - Specification of the minimum number of warehouses so that the specified maximum distance to at least one warehouse is kept.
 - 2. Determination of all coordinates of the regional warehouses so that the sum of the transport costs is minimized, and the maximum distances are met.

- Distance-dependent cost rates, for example:
 - Euro per tonne-kilometer
 - Euro per truck kilometer
 - Differences according to transport relations (inbound / outbound)
- Further assumptions on the transports

Experiences from SCM Projects Location Selection by Optimization

Still Open:

- How high must the coverage be set in the individual warehouse locations?
- → How often must deliveries be made?
- What are the effects of different transport batch sizes?
- Do intermediate transports have to be planned in order to cope with fluctuations in demand?

Solutions:

- Refinement of optimization models
- Simulation of the best variants from the optimization for a better comparison of the costs and determination of parameters of the order policies, ...

Location Selection Optimization vs. Simulation

Question	ОРТ	SIM
The number of possible hubs is limited to ten locations.	~	
The maximum distance to customers is 250 km.	✓	
The delivery service level should be at least 99%.		~
Each store must be supplied at least once a week.	~	
<i>Up to ten trucks are available for delivery every day. How should route planning be designed?</i>	✓	~
There are various proposals for assigning production steps to locations.	✓	(*)
Some products are only produced three times a year.	(√)	~
No ships can moor at high tide. Tank wagons must then be used as replacements.		~
The parts have to be transported on special containers, also the return transports to the production have to be planned, as these are only available in limited quantities.		~

Summary

- Processes should be examined in detail in the requirements or as-is analysis, precisely because many assumptions typically must be made about the operational processes and decision rules.
- Assumptions and simplifications should be appropriately documented
- A high percentage of projects have special aspects in their processes (i.e. extension of standard processes necessary)
- Conclusions
 - The simulation tool used should enable extensions or changes in the implementation (e.g. planning functionalities)
 - → Allow sufficient time for model validation and calibration

SCM Simulation as a Digital Twin

What is a digital twin?

- Definition by Gartner:
 - → A digital twin is a digital representation of a real-world entity or system
- The words most often used to describe a Digital Twin
 - Simulation, real-time data, dynamic, understanding, learning, reasoning

What is a digital twin?

- A supply chain digital twin is a **detailed simulation model** of an actual supply chain which predicts the behavior and dynamics of a supply chain to make:
 - Strategic and tactical decisions (midterm)
 - → How should a supply chain work i.e. supply chain processes / resources / logic
 - \rightarrow Time horizon: a few months up to years of operations
 - Operational decisions (short-term)
 - \rightarrow Identification of problems and the analysis of solutions
 - \rightarrow Time horizon: a few days or weeks

What makes a supply chain simulation model a digital twin?

A digital twin is a detailed simulation model of a supply chain

A digital twin should be able to predict the behavior of a supply chain

Integration with IT infrastructure

In many cases a digital twin is part of a "bigger thing" e.g. a control tower, and should be able to integrate with its surrounding IT environment

Real Time Data/Snapshot A digital twin uses real time

data to make forecasts

Notifications/alarms/alerts about abnormal situations

A digital twin should allow you to define what abnormal behavior is and send notifications about critical/abnormal situations

Triggers

A digital twin should allow the definition of automatic actions for some events

Test an action plan

A digital twin should allow you to test actions to efficiently manage your supply chain

What makes a supply chain simulation model a digital twin?

SCM Simulation in Risk Management

- According to the Business Continuity Institute, 65% of all companies have had at least one significant interruption in their supply chain in 2017. Consequences:
 - → Loss of productivity
 - → Reduction of delivery reliability
 - Loss of revenue
- Between 2000 and 2018, interruptions in the supply chain due to natural or man-made disasters have increased significantly in number and impact

Risk Types

- Operational risks
 - → The cause lies in the supply chain itself, or in the business processes implemented in the chain
 - Example: Fluctuations in demand and availability lead to the bullwhip effect in the supply chain, which propagates upstream
- Disruptive risks
 - → Unique occurrence, but drastic impact
 - Natural disasters
 - → Political changes
 - → Legal changes
 - → Strikes
 - → Spread out in waves towards the downstream end of the supply chain (domino effect)

Examples of disruptive risks in recent years

- The earthquake and the following tsunami in Japan in 2011 cost Toyota its top position in sales figures. Other industries were also affected by the resulting bottlenecks.
- The flood in Thailand in 2011 had an immense impact on the high-tech sector. Intel claims to have lost \$1 billion in sales revenue as OEMs were unable to produce computers due to supply shortages in hard drive manufacturing.
- Due to the conflict between Volkswagen and the Prevent Group in summer 2016, 6 VW plants had to be temporarily closed.

How can you protect yourself against the domino effect?

Which issues can be investigated with simulation?

- What impact will a disruption have on the performance of the supply chain?
- How long does it take for a supply network to recover after a disruption?
- How long can a supply chain compensate for such disruption?
- What role does the extent and timing play in the spread of disruptions?
- What network strategies are most efficient in compensating for disruptions at different levels of severity?
- What are the most critical scenarios regarding the spread of the disruption?

"Predicting the impacts of epidemic outbreaks on global supply chains: A simulation-based analysis on the coronavirus outbreak (COVID-19/SARS-CoV-2) case" by Dmitry Ivanov

https://www.sciencedirect.com/science/article/pii/S1366554520304300

SCM Simulation in Risk Management

References

SCM Simulation

www.SimPlan.de

Distribution Network ZF Trading

Problem

- Five distribution centres in Europe
- Several production sites
- Customers are currently permanently assigned to warehouses

Objectives and challenges

- Establishment of a virtual warehouse
- Distribution of the more than 50,000 articles via five European warehouse locations

Orders (1 year)

- 305.000 Orders with 900.000 order lines
- 3.363.000 Pieces

Results

- Significant reduction of (capital commitment) costs by successively reducing the number of article allocations
- Simulation model as basis for continuous (re-)allocation of articles

- Object of investigation
 - Currently about 50 locations (production and warehouses)
 - → 12,000 articles (35,000 article allocations)
 - Different types of articles (production articles, 3rds, sun, promotions, designed once or during the year)
- Objectives of the overall project
 - Evaluation of different optimization measures regarding potential for reducing the stock (until 2010)
 - → Design of (future) warehouses

References SCM Simulation

- Examined optimization measures
 - Concentration on fewer locations
 - → Change in the delivery process
 - → Introduction of multi-lingual articles and product range streamlining
 - Production flexibilization
 - → Improvement of the forecast quality
- Data Basis
 - → Article master data
 - → Sales figures of the year 2005 (article level)
 - → Forecasts on sales development (item level)
 - ➔ Information on transport relations
 - → Calendar for the relocation of production articles
 - → Calendar for relocation of delivery locations
 - Development of forecast quality (global)

- Modelling approach
 - → All structural changes are reflected in the model over time
 - Modelling of rules for relocation
 - Stock-buildup to bridge resource shortfalls
 - → Handling of residual quantities
 - Rules for the reduction of coverage when merging locations or multi-lingual articles

- Experiments
 - → Model validation based on real data for 2005
 - > Comparison of inventory trends and delivery service levels for (individual) locations / articles
 - "Base Line": evaluation of the inventory development, unless optimization measures (besides relocation) are carried out
 - → Evaluation of the individual effects independently of each other
 - > Evaluation of the combination of individual or all optimization measures

- Results
 - → Significant reduction of inventories is possible
 - The introduction of multi-lingual articles as well as production flexibilization offer the greatest potential for optimization

Volkswagen Tyre Distribution

- Simplifications required due to the volume of data
- Clustering: determine substitutes for all classes and simulate them
 - → Example: Distribution network with over 200,000 articles
 - → Formation of few clusters for the articles
 - But: modeling of all 1346 customer locations and 10 warehouse locations
- Goals
- Evaluate scenarios for possible central warehouse locations (no optimization)
- Determination of the respective transport costs
- Evaluate different ranges for the articles

Q&A

www.SimPlan.de

SERVICE SOLUTIONS SOFTWARE SUPPORT

Thank you for your attention!

Dr. Till Fechteler

SimPlan AG Hanau, Braunschweig, Dresden, Holzgerlingen, München, Regensburg Adolfstr. 21 38102 Braunschweig, GERMANY Phone +49 531 70095-10 Fax +49 531 70095-19 Email <u>Till.Fechteler@SimPlan.de</u> Web <u>www.SimPlan.de</u>